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We describe an experimental situation with a looped line defect in nematic liquid crystals
observed by polarizing optical microscopy. We measured the critical size of the loop below
which it spontaneously shrinks and transforms into a point defect. The experiment was done
with SCB which gives rise to twist disclinations as do most of the usual nematics. For this
kind of disclination an in-plane force due to the boundary conditions acts on the line and
influences the critical radius. We have constructed a model which is in good agreement with
experimental measurements and deduced the line tension of the disclination.

1. Introduction

Nematic liquid crystals are useful media in the study
of the formation, structure, stability and dynamics of
topological defects such as walls, lines (strings) and
point singularities [1-4]. The special case of domain
walls which separate regions with stable and metastable
director configurations has attracted considerable inter-
est [5,6], since these states can easily be created in
nematics by applying external fields. From general con-
siderations, the motion of the defect will be determined
by the elastic and external field energy difference between
the two states, the viscous damping and the core (elastic)
energy of the defect [ 7-9].

Concerning the case of a nematic between homeo-
tropically anchored glass plates, different experimental
situations allowing the observation of such line defects
are described in reference [6]. In particular, a dis-
clination is usually observed in the neighbourhood of
curved interfaces separating the nematic from other
materials (air, isotropic phase, metal wires, etc.) [8, 9].
The reason is that the curved profile of the interface
and the anchoring conditions on it force a turn-over of
the director across the sample thickness. Then a line
separates a region of homeotropic orientation from a
region with a turn-over (m-wall) of the director.

We describe in the following an original experimental
situation with cylindrical symmetry in which the line

* Author for correspondence; e-mail: thiberge@inln.cnrs.fr

possesses a looped shape. In that case, the line tension
can balance the free energy of the inversion domain
allowing a measurement of the line energy. A similar
situation has been described in focal-conic smectic
domains [10].

2. Experimental

Small droplets of the nematic liquid crystal 5CB
produced by the technique described in [6] are sand-
wiched between parallel glass plates separated by spacers
of thickness 4. The resulting cylindrically symmetric
droplets (‘globules’) have a disc-like shape (the axis is
along z and the radius is R,) with a concave meniscus
along the side. The cross section of a globule is shown
in figure 1. The director distribution indicated in the
figure is a result of homeotropic anchoring on the glass
plates achieved by lecithin coating and the natural

RI Rg

Figure 1. Schematic cross section of a globule with radius
R,. A loop defect of radius R, is located in the midplane
of the sample and is denoted by two black dots. Nails
denote the out-of-plane director components.
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perpendicular alignment of molecules at the nematic—air
interface [11]. One can distinguish two regions: the
central part of the globule which is homeotropic, and
its outer ring in which the semi-torroidal shape of the
meniscus imposes a Tt turn of the director along z. Then
a singular line of topological charge — 1/2 separates
the two regions. Because of the cylindrical geometry the
disclination line forms a circular loop of radius R, (see
figures 1 and 2).

Samples of thickness ¢ (measured by conoscopic
technique [12]) in the range 5-60 pm have been used.
Measurements were carried out at room temperature
(22°C) using a polarizing microscope equipped with a
video camera. Pictures were recorded and digitized.
An image analyser program was used to measure the
line defect radius R, and the position of the extinction
brushes.

An image and a schematic representation of a globule
between crossed polarizers are shown in figure 2. The
central homeotropic region of the globule is surrounded
by the disclination loop. The appearance of the outer
region containing the deformed director profile (1t turn
along z) will be discussed below. It is bordered by the
meniscus, which appears always as a black ring with or
without polarizers. Its thickness (M) was typically found
in the range 15-30 pum and showed only a weak d
dependence. The outer black background in figure 2 (@)
is the air around the globule and this also contains the
meniscus.

3. The loop defect and the = wall
3.1. General observations
Depending on the radius of the globule R, one
finds two initial situations. First, in large globules the
loop defect has a stable position at a distance S from

Meniscus

Disclination Line

the meniscus (S=R, — R,). S was found in the range
10-25 pm for our sample thickness range and was also
only slightly 4 dependent. Applying an electric field
across the sample, S decreases, and the line is pushed
towards the meniscus. On switching off the field, the line
relaxes to its equilibrium position with a characteristic
time which is independent of the globule size in the limit
of small curvature where the line tension can be
neglected.

Since the liquid crystal SCB has a positive diamagnetic
anisotropy Ay, applying a rotating magnetic field H in
the plane of the sample with an appropriate strength
and rotation frequency (typically a fewHz), the radius
of the defect line can be decreased and the defect can be
positioned at any R,. On removing the magnetic field,
the defect loop either relaxes to its initial position at
distance S from the meniscus if R, > R¢, where R; is the
critical value of the defect radius, or it shrinks and
implodes to a point defect of topological charge + 1 in
the middle of the globule if R < R{. By applying both
an electric field along z and a rotating magnetic field in
the xy-plane, one can precisely control the position of
the defect line.

Secondly, in small globules, the defect loop shrinks
spontaneously and the stable configuration is a point
defect (R, = 0) in the centre of the globule, with a 7t wall
in the midplane of the whole sample. One observes the
extinction cross between crossed polarizers which is
usually deformed into a spiral towards the globule
boundary. The direction of the cross deformation—the
handedness of the spiral—alters from globule to globule.
In extremely small globules (R, ~ 1-2d) a perpendicular
extinction cross without spiralling was observed, indi-
cating a different, probably metastable, configuration

N\

Figure 2. (a) A microscopic image of a globule observed between crossed polarizers. The central black region is homeotropic
nematic and the external black area is air. In the intermediate region, there is a turn-over of the director along z. The
disclination line is easily seen between the homeotropic and the distorted regions. The polarizers are horizontally and vertically
oriented. The meniscus is not visible under crossed polarizers. (b) Schematic representation of the globule.
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which is presumably due to the structure of the point
defect [ 13].

Starting from a globule with a point defect in its centre,
it is possible to generate the looped line configuration
by applying a high voltage (explosion). The transition
from a point defect to a looped line needs a high electric
field of the order of 25000 Vem™'. Applying this field,
the point defect explodes and the line rapidly approaches
the globule boundary, breaking the anchoring at the
meniscus. At this point, if the electric field is reduced to
a few thousand Vem™', the natural anchoring at the
meniscus is restored and the line reappears in the globule.
In small globules the field must be sufficiently high to
keep the line close to the meniscus.

If the field is switched off, the loop slowly shrinks (see
the dashed line in figure 3). By applying an electric field
during this process, one can influence the loop dynamics.
Choosing a voltage (well below the explosion voltage)
and switching it on at ¢, (early) the line motion reverses
(as curve 1 shows). Applying it at ¢, (late), the line
velocity decreases, but it continues to shrink (see curve 3).
Repeating this experiment several times for a given
applied voltage ¥, one can find with good accuracy the
value of the critical radius R;(V) at which the defect is
stationary (curve 2).

3.2. Description of the director distribution
Let us now consider the director distribution in the
vicinity of the defect line. Ideally, the disclination line
could be of the wedge or twisted type (see figure 4)
[4]. Though the wedge disclination represents a simple
director configuration (i.e splay—bend distortion in the
plane perpendicular to the line), it is very rarely observed.

100
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Figure 3. Superposition of several line movements versus

time. The dashed curve shows spontaneous shrinking
(¥ =0) of the loop radius. Curves 1, 2 and 3 demonstrate
the loop radius behaviour when a voltage 1 is applied at
t,, t, and t,, respectively. R:(V) denotes the stationary
loop radius for the given V.
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Figure4. (@) A pure wedge disclination; (b)) a pure twist
diclination with homeotropic anchoring on the surfaces.

Instead, a more complex arrangement including twist is
preferred in usual nematic liquid crystals. This is due
to the difference in the elastic free energy densities
associated with the three types of deformations. The
wedge disclination would be stable if K,>K, or K,.
This is normally not the case for usual nematics, and
contrarily, for K, < K, or K,, the director escapes out
of the splay—bend distortion plane into the third dimen-
sion. In this way the resulting configuration involves
twist and consequently decreases the total energy.
Anisimov and Dzyaloshinskii [ 14] have calculated the
condition under which the elastic constants determine
which configuration will be more favourable energetically.
They showed that a wedge line in an infinite medium is
unstable if K, < (K, + K, )/2. This is also the case for
SCB (from [15] the ratios of K;/K, are 1:0.5:1.3).

Experimental evidence for the fact that the disclination
line in our globule (observed with 5CB) cannot be a
pure wedge type is the spiral shape of the extinction
cross, see figure 2 (@); this indicates that the director
prefers to approach the loop tangentially instead of
radially. Thus the twisted structure shown in figure 4 (b)
is preferred against figure 4(a) in the vicinity of the line.
The latter involves all three elastic deformations.

The director position will be described using cylindrical
coordinates (r, w, z). Two angles 6 and @ are also intro-
duced which describe the director orientation in a polar
coordinate system; 0 is the tilt angle and @ the azimuthal
angle (see figure 5). Under homeotropic anchoring, ®=0
in a pure wedge disclination [see figure 4(2)] and @ =172
in a twist type disclination [see figure 4 (b)].

The system we are studying is cylindrically symmetric;
thus we do not consider v dependence. Let us take a
line at the position R,. For r< R, the director is homeo-
tropically aligned (9=0). For r> R,, following the
director variation along Oz, one has a splay—bend
deformation described by the angle 6(r, z) (the 7t wall).
One should note that 6 is a function of z, but near the
line it is also a function of r, because the thickness of the
mtwall tends to zero in the vicinity of the disclination line.
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v N,

Figure 5. Coordinates system and notations of the director
orientation.

In addition, a second deformation is present in the
midplane of the sample at z = 0 containing the line. This
deformation is due to the competition between the
perpendicular anchoring at the meniscus (@ = 0) which
would favour the wedge configuration of the line, and
the natural tendency of the line to adopt a twist con-
figuration (& = 7/2) as mentioned earlier. It is described
by the angle @(z, r) which increases monotonically from
zero at the meniscus to a finite value at the defect loop.
At a radius r between R, and R,, the function @(z, r) is
maximal in the midplane (z =0) and decreases sym-
metrically towards the glass plates (z = + d/2) to a finite
value. Then a small twist deformation appears along z.

If the ratio R,/R, is small, the influence of the
anchoring at the meniscus on the structure of the line is
weak. Then one can assume that the value @(0, R)) is
72 and the line is in a twist configuration, figure 4 (b).
Experimental observations confirm this idea. But for

larger values of R/R, this cannot be assumed and
experimental observations did not allow us to determine
@(0, R,) precisely.

We measured the opening angle («) of the extinction
brushes (see figure 6) as a function of the loop radius.
a decreases linearly with increasing R, indicating the
change of the director configuration as the width of
the deformed zone R, — R, decreases. There is a cross
over to a regime (at about 30 um for this globule) with
a stronger dependence on the line radius (a larger slope
of the o(R,) function) when the defect line approaches
the meniscus. This behaviour is similar for any globule
radius R,. The cross over always occurs at a distance
from the meniscus of the order of its thickness M. We
conclude that this is linked to details of the meniscus
shape and the anchoring conditions.

Supposing that the polarization of the light follows
exactly the variations of the angle @(z,r), o is then
a measure of @d(+d/2,R,). But in fact, because the
angle 0(z) is a function of z, the polarization cannot
rotate around z as fast as the director. Then we have
D(+ dJ2, R)< o< @(0, R, )< 2. Then, for values between
0 and 772, « is always slightly greater than &(+ d/2, R,)
except in the case o= 702 for which there is no twist
along z because @(z, R,) cannot be different from /2.

Further experimental evidence of the twisted nature
of the line is given by the appearance of point defects
(cusps) observed along the line. It has been shown [16]
that in (uniaxial ) nematics, when the director orientation
in the region of the m wall forces the director to be
perpendicular to the twisted line in the midplane of the
sample, the line can exhibit cusps. The two energetically
equivalent orientations, one on one side and one on the
other side of the cusp (‘zig’ and ‘zag’), correspond to
the two possible directions in which the director can

n/2f T
"-:.-’:‘-‘_.
Mﬁ“];u
o ""'"“-.:5_
Y
Figure 6. Opening angle of the 0}, ‘ ! | | |

brushes « (defined in the inserted

picture) is measured as a function 0 10 20 30 40 50
of the position of the line. R, / um
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escape along the line axis. Two successive segments of a
line are then separated by a cusp where locally the line
is of the wedge type [4].

In our experiments, the defect line usually appeared
with several cusps (always an even number) which
deform the loop and break its cylindrical symmetry. To
restore this symmetry by annihilating the cusps, we used
a slowly rotating (few Hz) magnetic field in the plane of
the glass plates. A small asymmetry of the magnetic field
forces the cusps to approach each other, and leads to
their annihilation after a few tens of seconds. Finally we
obtain a cylindrically symmetric system, see figure 2 (a):
there is a unique escape direction along the line.
Depending on the direction of the rotation of the mag-
netic field, the spiral shape of the extinction brushes is
right- or left-handed.

4. Theoretical considerations: condition of the line
equilibrium

In this section we introduce characteristic quantities
in terms of which we will later present and analyse the
experimental results. We give an expression for the free
energy density of the globule, taking into account elastic
and electric contributions, as well as terms accounting
for the line tension of the defect and for its interaction
with the meniscus. After some approximations we mini-
mize the total free energy density in order to find the
critical (unstable equilibrium) defect loop radius.

4.1. Free energy
The free energy F of the system can be written in the
form:

F=F+F,+F +F, (1)

where F, is the energy of the loop which is in competition
with the deformation energy F, of the reversal domain
containing the 7t wall, and F, is the electric contribution
to the energy in the homeotropic central region. These
terms model the situation of a wedge line sufficiently.
In case of a twisted line, in our geometry, one needs to
have an additional term F, to characterize the inter-
action of the line with the meniscus, taking into account
the out-of-plane director component (azimuthal angle @).
F,, should be a function of R, — R, in such a way that
F,, increases with R, for a given R,.

The free energy, equation (1), leads to the existence
of an unstable equilibrium position of the line at a
critical radius R;(V, R, ) above which the loop will grow,
and below which it will shrink and the reversal domain
will occupy the whole globule. R;(V, R,) is a function of
the applied voltage ¥ and the globule radius.

The exact director distribution is hard to calculate
and a simple model is introduced in order to estimate
the energy of the system. We assume that the director is

parallel to z (homeotropic alignment) in the region
r< R,. In the reversal domain for R, < r< R, we assume
0(z) to be independent of r. This means that we simplify
the exact director distribution close to the line, and
introduce a singularity in the spatial derivative of the
vector n at r = R,. We may assume that the energy is not
affected strongly by such an approximation. Moreover,
the distribution close to the line is taken into account
in the term F,.

4.1.1. Line energy

In this model we do not go into the details of the line
energy; we suppose the energy density per unit length o
to be independent of the field applied. The line energy
is:

F,=2TR,o. (2)

4.1.2. Electric energy and deformation energy of the
reversal domain

We will make the assumption that the deformation
energy of the reversal domain is composed of two
independent terms. The first one comes from the dis-
tortion along the vertical z-axis. The second one originates
from the distortion in the plane (r, ) and is due to the
curvature in such a cylindrical system. This second
contribution will be taken into account in the F, term
and we will restrict F, to the first elastic contribution
and to the electric energy. Then F, can be expressed as
the product of the total surface of the reversal domain
and the energy density per unit area, which we call Au.

Fy=T(R. — R})Au. (3)

In order to calculate Au, we approximate 6(z) by the
one-dimensional problem of the mwall (@=0). The
director is described by:

sin 0(z)

0

n
Cos 6(z)

The free energy density [ 17] is then given by:
K K y
fi= 7](diVn)2 + 73(n X curl ny — %(E n)

3

K . 0 & &,
=—1[1- i sin’ 6(z)] [— 9(2):[ — —E* cos’ 0(z)
oz 2

2
(4)
with
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The Euler—Lagrange equation

Sf_o ) o 5
dz (ola6i)ez1)  a6(¢)
gives:
sin 0(z) cos 6(z) {kz [ﬁ 9(2):[ + mz}
oz
. &
=[1— k*sin’ 6(z)] I:z— 9(2):| (6)
o0z
where

(&4 ”2V>0
"\k, ) 4

and V is the applied voltage.

Equation (6) can be solved simply when there is no
electric field (m =0) or in the case of the one-constant
approximation (k = 0).

In the case of m = 0, taking into account the boundary
conditions z(9=0)= + d/2 and the condition z(6=72)=0
obtained by symmetry, the solution of equation (6) is:

_d Lo(6,k)
0=+ 5 [1 S e k)] )

and the free energy density integrated along the z-axis
is:
_ K, 4Ly (192, k)

Au= 2 d (8)
where L. (0,k) is the Legendre elliptic integral of
second rank.

When an electric field is applied (m+ 0), we take
K, =K, =K (k=0)in order to find an analytic solution
which leads to:

_dL.(2- 06,h)
O L ”
and
A :g#ﬂlz”ﬂmmz,m_ L2, 1] (10)

where L. (6, k) is the Legendre elliptic integral of first
rank and 4, called generally the modulus, depends on
the applied field and is the solution of the equation:

d
hLF(Tr/Z,h)sz. (11)
h takes its limiting values 0 and 1 for zero and infinitely

high electric fields, respectively. This equation expresses
the condition 6 =772 at the midplane z = 0.

4.1.3. Electric energy of the homeotropic domain
Using the same notations indicated earlier we write:

K
F,= - SR nd. (12)

4.14. Interaction of the line with the meniscus

The interaction of the line with the meniscus is the
most complicated term to describe. Some simplifications
have to be made to approximate F,, . We suggest making
an analogy with ‘the magic spiral’ problem [2] which
describes the director distribution in a nematic enclosed
between two concentric cylinders with different boundary
conditions on their surface. The 2-dimensional [(r, y)
dependence] case has the solution:

@O(r) = (192) In(r/R, )/In(R /R, ). (13)

This situation is similar to the one we have in our
problem in the plane at z = 0.

It is important to note that F, is field dependent.
When the electric field is applied the turn over region
gets thinner along z. F,, which is also the result of
integration along z, then becomes lower.

An estimation of F, is possible starting from the
@-distribution given by equation (13). We assume strong
perpendicular anchoring at the air interface [11]. The
main hypothesis is that we suppose @(z,r)= @(0,r)
given by equation (13) for any z. This means that we
neglect the twist deformation along z or forget that the
line has, on a microscopic scale, the structure drawn in
figure 4 (b). This estimation gives:

(W2) + I’ (R, /R))
In(R,/R,) ]

F,=TKD() (14)
where D(V) is a measure of the thickness of the turn
over region along z:

df2
D(V) =j sin® 0(z)dz
—dp

_d L2 b :
-2 [Lp(m’h)_ (1—h )]. (15)

D(V) tends to d/2 for V- 0(h — 0) and approaches the
electric coherence length £=(K,/g ¢ ) "?(d/V) [2] at
high field (» = 1).
The R,-derivative of F_ is:
oF (92) — I (R, /R,)

—2 =K D(V)
AR, R I (R,/R,)

(16)

Equation (16) shows that when the line gets closer to
the meniscus, the in-plane splay—bend deformation become
greater. And when the radius of the line decreases, the
bend deformation close to the line is more and more
important and the energy diverges at R, =0. Then this
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leads to the existence of a minimum of F,, between R, =0
and R, = R,. This corresponds to R,/R, = exp(— 10/2)= 0.2.
For R, greater than 0.2R,, the force acting on the line is
repulsive, in the case of R < 0.2R, it becomes attractive.

4.2. Critical radius

For large R, (or small R, but sufficiently high electric
field) the total energy F has two minima, one at R, close
to zero and the other close to R,. Depending on the
globule size and the electric field, the absolute minimum
can be one or the other. Between these two minima, the
free energy reaches a maximum value at a line radius
called the critical radius R¢.

For low values of R, and a low electric field, the
second minimum disappears because of the domi-
nating repulsion term, equation (14). This means that
the line spontaneously shrinks. When R; does exist, the
R,-derivative of F gives the solution for R;. Three cases
can be considered.

(1) When the interaction of the line with the meniscus
is negligible (R; =~ 0.2R,), the critical radius can be given
by the function:

(d/2)(clK)
Ly (92, )[2L (92, h)— (1= h*)Le (2, )]
(17)

R]no m (V) —

The two limiting cases are:

V.o/V is small (h=1), then R ™ (V) is proportional
to (1/v);

Vic/V is large (h=0), then the critical radius
saturates at a constant value of R ™(V)=R™(0)=
(d/2)(o/K)(2) (figure 7 shows curves calculated for
5CB).

Vic=2(K/ge¢ )" is a material parameter. This can
also be used to estimate experimentally the line tension
o of the defect (in units of the elastic constant); this
resulted in a value of c=84K in our case.

The limit R!°™(0) can be estimated much more
accurately by taking into account the anisotropy of the
elastic constants; thus &+ 0:

d/2)(olK3)
Li(m2,k)

In figure 7, the critical line radius is plotted as a
function of the relative voltage. The lowest curve in
figure 7, calculated for R, = 135 um, corresponds to the
no interaction case and is given by equation (18).

(2) In the general case, also taking into account the
interaction term, the cancelling of the first R-derivative
of F gives:

1 (6F,
R =R (V)|:1+%(6RI )Rl]. (19)

The critical radius R¢ is the solution R, = R¢ of this
equation and can be checked numerically.

The high voltage (linear) part of the curve (figure 7)
remains unaffected by the interaction term for any
globule radius, but the zero voltage limit of R; shifts
to higher values as R, decreases (e.g the curves for
R, =83, and R, = 51 um in figure 7). Both terms on the
rhs of equation (19) contribute and one observes an ‘S’
shape of the curve (see the results for R, =35, 40 and
47 pm in figure 7).

(3) The tricritical limit. As mentioned earlier, for small
R,, the critical radius does not exist above a certain
value of the electric field because the repulsion term is

R (0)= (18)

30 -

um

RF

Figure 7. Theoretical prediction of
the critical radius for different
globule sizes as a function of
the inverse of the applied volt-
age (using c=84K), R, =35,
40, 47, 51, 83 and 135pm. -
The dashed line is the tri- -

10 |

critical limit. V. =2(K/g, ¢, )"
is a material parameter.
Rrerer(V =0)=24.5 um.
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dominant. One can calculate the minimum electric field
for which R; still exists. This occurs at that voltage
where the energy maximum and minimum coincide; thus
the first and second derivatives of the energy simul-
taneously vanish. One has to solve a system consisting
of equations (19) and (20), the latter equation is obtained
by direct derivation of equation (19):

1 (&°F
R]nom (V)_ 2'" =1. (20)
2o \ ORy  Jri= RE(V,Re)

The solution of this system is a tricritical point in the
parameter space (¥, R,, R{) and will be denoted by
(V, Rys RS ).

The solution (V,, R,,, R},) delivers the dashed line
shown in figure 7 and the nearly constant part of the
curve for low R, in figure 8, where black dots represent
the experimental data for the tricritical behaviour.
Figure 8 also shows the solution of equation (19) for
V=0 (globule radii above 50 pm) and the corresponding
experimental results (circles).

Solutions of equation (19) for different values of R,
(full lines), and the solution of the system of equations
(19, 20) (dashed line) are shown in figure 7.

5. Comparison of experiments and theory

Most of our measurements were made for a thickness
d=14.5+ 0.5 pm. It was found that at zero voltage the
largest globule which had the point defect (R, =0) as
the stable configuration was R, =47 um. The smallest
one, which had the defect line close to the meniscus as
the stable configuration, was R, =51 pm. We assume,
that the experimental value of R,,(V, =0) is 49 + 2 um.
This is in a very good agreement with the theoretically
predicted value which is 50.1 pm and can be deduced
from figure 8. It corresponds to the cross over of the

theoretical curve from its approximately constant part
(tricritical range without stationary line radius) to the
rapidly decreasing part, where the critical radius is given
by equation (19) (for '=0). We note, that the experi-
mental points (black dots in figure 8) obtained for
globules in the range 20 pm< R, < 47 pm (with a stable
point defect configuration) in such a way, that the
minimum voltage was measured at which the loop
defect could be stabilized, show also a cross over around
S0pm. This is an independent measurement from the
observation of the stable globule configuration without
electric field. The experimental data for R{/R, in this R,
region (below 50 pm) scatter within 0.68 + 0.02 which is
a range determined by the experimental accuracy. The
model (continuous line) predicts a slight increase of
R;/R, with R, reaching a value of 0.65 at the crossover.
This discrepancy could be due to the approximation
used for determination of the interaction term (F,,)
between the line and the meniscus.

On the right side of figure 8, R (0, Rg)/ R, versus R, is
presented for globules larger than R,,. R{(0,R,)/R,
tends to the value 24.5/135= 0.2 in the R, range studied
(50 pm ... 135 pm). In this range, the force due to the
in-plane deformation, derived from equation (16), is
always repulsive. As was discussed before, if the value of
R; is of the order of 0.2R,, the repulsive force acting on
the line is zero. This is the case for R, = 135 um because
R;(0,135)=245pum. This value gives R*™(V=0)
which can be given either by equations (17) or (18),
depending on whether the anisotropy of the elastic
constants is taken into account.

We measured the critical radius as a function of
the applied voltage for several globule sizes R, in
a range including R,,(V'=0). Results obtained are
shown in figure 9. The asymptotic limits for low 1/¥

07 | §§
06 |

05

C 04

Figure 8. Experimental measure-
ments and model prediction
(using o= 8.4K) of the tricritical 03 |
range (left part, black dots)
and critical radius at zero field
applied (right part, white dots). 02
Experimentally, the tricritical |

| L | | L

point at ¥, =0 is obtained for 50 40
R° =49+ 2um, theoretically
for Ri° =50.1 pm, d = 14.5 pm.

60 80 100 120 140
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for different globule radii as a
function of the inverse of the
applied voltage, d = 14.5 um.

[dotted line, given by equation (19)] and for high 1/V
[continuous lines calculated for R, = 51 um and 83 pm
from equation (19)] are also shown. A good qualitative
agreement can be seen between theory and experiment
by comparing figures 7 and 9. Experiments show the
saturating behaviour in the limit of large 1/V for
R,> R,,.

For R, =135um and V' =0, the interaction with the
meniscus vanishes and the asymptotic value for the R;
can be calculated from equations (17) and (18). For
medium globules (R, = 51 pm and 83 pm) this is not the
case and R{(0, R,) shifts to higher values as predicted
by equation (19), and can also be seen experimentally.
For smaller globules (see R, = 35 um and 47 pm) the ‘S’
shape can also be clearly seen. There are quantitative
deviations especially for R, < R,,. The exact ‘S’ shape
of the curve is basically determined by the force of
the interaction energy (F,, ) which we approximated by
equation (16). By describing it more precisely one could
expect a better quantitative agreement.

As already mentioned, our model allows us to
determine the line tension (o) of the loop defect. Using
equation (17) for the isotropic elasticity we obtain
oc=(84+ 0.3)K and using equation (18), taking into
account anisotropy, we have o=(7.3+ 0.3)K, taking
kK =0.23.

In the calculations presented we used the value of
8.4K. In order to check whether this is a realistic value
we compared it with other work [3]. Ranganath [3]
has calculated the free energy of the planar twist
deformation per unit length of a defect line, using the
approximation K, =K, =K:

wist

S =T KK PG+ S (2D)

4 6 8

where the diameter of the core « is ~100A and the
energy per unit length of the core f:ic, is estimated
~(KK, )" /2. In our model we did not go into the details
of this energy which is supposed to vary with the
thickness / of the turn over region, which itself is electric
field dependent. Because / appears in f,,,, through a
logarithmic term, it does not lead to significant modi-
fications in the electric field range used. Then, con-
sidering o as a constant value seems to be a good
approximation. Calculation from equation (21) gives
Sowise ~ 6=T K, with typically / ~ 15 pm.

6. Conclusion

Analysis of the extinction brushes permits one to
understand the director distribution around a twisted
line constrained in the plane of the sample. This kind of
line is most commonly found in nematic liquid crystals
because the elastic constants usually verify the Anisimov
and Dzyaloshinskii [ 14] condition for the stability of a
wedge disclination (see §3.2).

We estimated the force acting on the line due to the
in-plane elastic deformation and found qualitatively
good agreement with the experiments. We have measured
the tension of a twisted line in the case of 5CB in a
sample of thickness d = 14.5 + 0.5 pm and compared the
results with the prediction made by Ranganath [3] and
found satisfactory agreement.

Our experiment also permits us to observe the trans-
formation from a loop line defect to a topologically
equivalent point defect. The inverse transformation can
also be carried out by using a very high electric field.
This process is of high interest and the mechanism of
this transformation is the subject of experimental and
theoretical work that is in progress. These observations
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are related to the theoretical work done by the authors
of reference [ 18]. The question raised is whether a point
defect could be energetically unstable against expanding
into a ring disclination of small radius. The nature of
the transition defect—extended loop defect should be
different in the case of a real point defect or small radius
ring defect. Attention will be devoted to this transition
experimentally in different liquid crystals in the near
future.
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