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We describe an experimental situation with a looped line defect in nematic liquid crystals
observed by polarizing optical microscopy. We measured the critical size of the loop below
which it spontaneously shrinks and transforms into a point defect. The experiment was done
with 5CB which gives rise to twist disclinations as do most of the usual nematics. For this
kind of disclination an in-plane force due to the boundary conditions acts on the line and
in¯ uences the critical radius. We have constructed a model which is in good agreement with
experimental measurements and deduced the line tension of the disclination.

1. Introduction possesses a looped shape. In that case, the line tension
can balance the free energy of the inversion domainNematic liquid crystals are useful media in the study

of the formation, structure, stability and dynamics of allowing a measurement of the line energy. A similar
situation has been described in focal-conic smectictopological defects such as walls, lines (strings) and

point singularities [1± 4]. The special case of domain domains [10].
walls which separate regions with stable and metastable
director con® gurations has attracted considerable inter- 2. Experimental

Small droplets of the nematic liquid crystal 5CBest [5, 6], since these states can easily be created in
nematics by applying external ® elds. From general con- produced by the technique described in [6] are sand-

wiched between parallel glass plates separated by spacerssiderations, the motion of the defect will be determined
by the elastic and external ® eld energy di� erence between of thickness d. The resulting cylindrically symmetric

droplets ( g̀lobules’) have a disc-like shape (the axis isthe two states, the viscous damping and the core (elastic)
energy of the defect [7± 9]. along z and the radius is Rg ) with a concave meniscus

along the side. The cross section of a globule is shownConcerning the case of a nematic between homeo-
tropically anchored glass plates, di� erent experimental in ® gure 1. The director distribution indicated in the

® gure is a result of homeotropic anchoring on the glasssituations allowing the observation of such line defects
are described in reference [6]. In particular, a dis- plates achieved by lecithin coating and the natural
clination is usually observed in the neighbourhood of
curved interfaces separating the nematic from other
materials (air, isotropic phase, metal wires, etc.) [8, 9].
The reason is that the curved pro® le of the interface
and the anchoring conditions on it force a turn-over of
the director across the sample thickness. Then a line
separates a region of homeotropic orientation from a
region with a turn-over (p-wall) of the director.

We describe in the following an original experimental
Figure 1. Schematic cross section of a globule with radiussituation with cylindrical symmetry in which the line

Rg . A loop defect of radius R l is located in the midplane
of the sample and is denoted by two black dots. Nails
denote the out-of-plane director components.*Author for correspondence; e-mail: thiberge@inln.cnrs.fr
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1226 S. Thiberge et al.

perpendicular alignment of molecules at the nematic± air the meniscus (S = Rg Õ Rl ). S was found in the range
interface [11]. One can distinguish two regions: the 10± 25mm for our sample thickness range and was also
central part of the globule which is homeotropic, and only slightly d dependent. Applying an electric ® eld
its outer ring in which the semi-torroidal shape of the across the sample, S decreases, and the line is pushed
meniscus imposes a p turn of the director along z. Then towards the meniscus. On switching o� the ® eld, the line
a singular line of topological charge Õ 1/2 separates relaxes to its equilibrium position with a characteristic
the two regions. Because of the cylindrical geometry the time which is independent of the globule size in the limit
disclination line forms a circular loop of radius R l (see of small curvature where the line tension can be
® gures 1 and 2). neglected.

Samples of thickness d (measured by conoscopic Since the liquid crystal 5CBhas a positive diamagnetic
technique [12]) in the range 5± 60mm have been used. anisotropy Dx, applying a rotating magnetic ® eld H in
Measurements were carried out at room temperature the plane of the sample with an appropriate strength
(22ß C) using a polarizing microscope equipped with a and rotation frequency (typically a fewHz), the radius
video camera. Pictures were recorded and digitized. of the defect line can be decreased and the defect can be
An image analyser program was used to measure the positioned at any Rl . On removing the magnetic ® eld,
line defect radius R l and the position of the extinction the defect loop either relaxes to its initial position at
brushes. distance S from the meniscus if R l > Rc

l , where Rc
l is the

An image and a schematic representation of a globule critical value of the defect radius, or it shrinks andbetween crossed polarizers are shown in ® gure 2. The implodes to a point defect of topological charge +1 incentral homeotropic region of the globule is surrounded
the middle of the globule if Rl < Rc

l . By applying bothby the disclination loop. The appearance of the outer
an electric ® eld along z and a rotating magnetic ® eld inregion containing the deformed director pro® le (p turn
the xy-plane, one can precisely control the position ofalong z) will be discussed below. It is bordered by the
the defect line.meniscus, which appears always as a black ring with or

Secondly, in small globules, the defect loop shrinkswithout polarizers. Its thickness (M ) was typically found
spontaneously and the stable con® guration is a pointin the range 15± 30mm and showed only a weak d
defect (R l = 0) in the centre of the globule, with a p walldependence. The outer black background in ® gure 2 (a)
in the midplane of the whole sample. One observes theis the air around the globule and this also contains the
extinction cross between crossed polarizers which ismeniscus.
usually deformed into a spiral towards the globule
boundary. The direction of the cross deformationÐ the3. The loop defect and the p wall
handedness of the spiralÐ alters from globule to globule.3.1. General observations
In extremely small globules (Rg . 1± 2d ) a perpendicularDepending on the radius of the globule Rg one
extinction cross without spiralling was observed, indi-® nds two initial situations. First, in large globules the

loop defect has a stable position at a distance S from cating a di� erent, probably metastable, con® guration

Figure 2. (a) A microscopic image of a globule observed between crossed polarizers. The central black region is homeotropic
nematic and the external black area is air. In the intermediate region, there is a turn-over of the director along z. The
disclination line is easily seen between the homeotropic and the distorted regions. The polarizers are horizontally and vertically
oriented. The meniscus is not visible under crossed polarizers. (b) Schematic representation of the globule.
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1227L oop defects in homeotropic NL Cs

which is presumably due to the structure of the point
defect [13].

Starting from a globule with a point defect in its centre,
it is possible to generate the looped line con® guration
by applying a high voltage (explosion). The transition
from a point defect to a looped line needs a high electric
® eld of the order of 25 000 VcmÕ 1 . Applying this ® eld,
the point defect explodes and the line rapidly approaches
the globule boundary, breaking the anchoring at the
meniscus. At this point, if the electric ® eld is reduced to
a few thousand VcmÕ 1 , the natural anchoring at the Figure 4. (a) A pure wedge disclination; (b) a pure twist
meniscus is restored and the line reappears in theglobule. diclination with homeotropic anchoring on the surfaces.
In small globules the ® eld must be su� ciently high to
keep the line close to the meniscus.

If the ® eld is switched o� , the loop slowly shrinks (see Instead, a more complex arrangement including twist is
preferred in usual nematic liquid crystals. This is duethe dashed line in ® gure 3). By applying an electric ® eld

during this process, one can in¯ uence the loop dynamics. to the di� erence in the elastic free energy densities
associated with the three types of deformations. TheChoosing a voltage (well below the explosion voltage)

and switching it on at t1 (early) the line motion reverses wedge disclination would be stable if K 2 &K 1 or K 3 .
This is normally not the case for usual nematics, and(as curve 1 shows). Applying it at t3 ( late), the line

velocity decreases, but it continues to shrink (see curve 3). contrarily, for K 2 < K 1 or K 3 , the director escapes out
of the splay± bend distortion plane into the third dimen-Repeating this experiment several times for a given

applied voltage V, one can ® nd with good accuracy the sion. In this way the resulting con® guration involves
twist and consequently decreases the total energy.value of the critical radius Rc

l (V ) at which the defect is
stationary (curve 2). Anisimov and Dzyaloshinskii [14] have calculated the

condition under which the elastic constants determine
which con® guration will be more favourable energetically.3.2. Description of the director distribution

Let us now consider the director distribution in the They showed that a wedge line in an in® nite medium is
unstable if K 2 < (K 1 +K 3 )/2. This is also the case forvicinity of the defect line. Ideally, the disclination line

could be of the wedge or twisted type (see ® gure 4) 5CB (from [15] the ratios of K i/K 1 are 1 : 0.5 : 1.3).
Experimental evidence for the fact that the disclination[4]. Though the wedge disclination represents a simple

director con® guration (i.e splay± bend distortion in the line in our globule (observed with 5CB) cannot be a
pure wedge type is the spiral shape of the extinctionplane perpendicular to the line), it is very rarely observed.
cross, see ® gure 2 (a); this indicates that the director
prefers to approach the loop tangentially instead of
radially. Thus the twisted structure shown in ® gure 4 (b)
is preferred against ® gure 4(a) in the vicinity of the line.
The latter involves all three elastic deformations.

The director position will be described using cylindrical
coordinates (r, y, z). Two angles h and W are also intro-
duced which describe the director orientation in a polar
coordinate system; h is the tilt angle and W the azimuthal
angle (see ® gure 5). Under homeotropic anchoring, W=0
in a pure wedge disclination [see ® gure 4(a)] and W=p/2
in a twist type disclination [see ® gure 4 (b)].

The system we are studying is cylindrically symmetric;
thus we do not consider y dependence. Let us take a
line at the position R l . For r< R l the director is homeo-
tropically aligned (h = 0). For r> R l , following the

Figure 3. Superposition of several line movements versus director variation along Oz, one has a splay± bend
time. The dashed curve shows spontaneous shrinking deformation described by the angle h(r, z) (the p wall).
(V =0) of the loop radius. Curves 1, 2 and 3 demonstrate One should note that h is a function of z, but near thethe loop radius behaviour when a voltage V is applied at

line it is also a function of r, because the thickness of thet1 , t2 and t3 , respectively. Rc
l (V) denotes the stationary

loop radius for the given V. pwall tends to zero in the vicinity of the disclination line.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1228 S. Thiberge et al.

larger values of Rl /Rg this cannot be assumed and
experimental observations did not allow us to determine
W(0, R l ) precisely.

We measured the opening angle (a) of the extinction
brushes (see ® gure 6) as a function of the loop radius.
a decreases linearly with increasing R l indicating the
change of the director con® guration as the width of
the deformed zone Rg Õ R l decreases. There is a cross
over to a regime (at about 30mm for this globule) with
a stronger dependence on the line radius (a larger slope
of the a(R l ) function) when the defect line approaches
the meniscus. This behaviour is similar for any globule
radius Rg . The cross over always occurs at a distance
from the meniscus of the order of its thickness M . WeFigure 5. Coordinates system and notations of the director
conclude that this is linked to details of the meniscusorientation.
shape and the anchoring conditions.

Supposing that the polarization of the light follows
In addition, a second deformation is present in the exactly the variations of the angle W(z, r), a is then

midplane of the sample at z = 0 containing the line. This a measure of W(Ô d/2, R l ). But in fact, because the
deformation is due to the competition between the angle h(z) is a function of z, the polarization cannot
perpendicular anchoring at the meniscus (W = 0) which rotate around z as fast as the director. Then we have
would favour the wedge con® guration of the line, and W(Ô d/2, R l )< a< W (0, Rl )< p/2. Then, for values between
the natural tendency of the line to adopt a twist con- 0 and p/2, a is always slightly greater than W(Ô d/2, R l )
® guration (W =p/2) as mentioned earlier. It is described except in the case a=p/2 for which there is no twist
by the angle W (z, r) which increases monotonically from along z because W(z, R l ) cannot be di� erent from p/2.
zero at the meniscus to a ® nite value at the defect loop. Further experimental evidence of the twisted nature
At a radius r between Rl and Rg , the function W (z, r) is of the line is given by the appearance of point defects
maximal in the midplane (z = 0) and decreases sym- (cusps) observed along the line. It has been shown [16]
metrically towards the glass plates (z = Ô d/2 ) to a ® nite that in (uniaxial) nematics, when the director orientation
value. Then a small twist deformation appears along z. in the region of the p wall forces the director to be

If the ratio R l /Rg is small, the in¯ uence of the perpendicular to the twisted line in the midplane of the
anchoring at the meniscus on the structure of the line is sample, the line can exhibit cusps. The two energetically
weak. Then one can assume that the value W(0, Rl ) is equivalent orientations, one on one side and one on the
p/2 and the line is in a twist con® guration, ® gure 4 (b). other side of the cusp ( z̀ig’ and z̀ag’), correspond to

the two possible directions in which the director canExperimental observations con® rm this idea. But for

Figure 6. Opening angle of the
brushes a (de® ned in the inserted
picture) ismeasuredasa function
of the position of the line.
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1229L oop defects in homeotropic NL Cs

escape along the line axis. Two successive segments of a parallel to z (homeotropic alignment) in the region
r< Rl . In the reversal domain for R l < r< Rg we assumeline are then separated by a cusp where locally the line

is of the wedge type [4]. h(z) to be independent of r. This means that we simplify
the exact director distribution close to the line, andIn our experiments, the defect line usually appeared

with several cusps (always an even number) which introduce a singularity in the spatial derivative of the
vector n at r =Rl . We may assume that the energy is notdeform the loop and break its cylindrical symmetry. To

restore this symmetry by annihilating the cusps, we used a� ected strongly by such an approximation. Moreover,
the distribution close to the line is taken into accounta slowly rotating (fewHz) magnetic ® eld in the plane of

the glass plates. A small asymmetry of the magnetic ® eld in the term F l .
forces the cusps to approach each other, and leads to
their annihilation after a few tens of seconds. Finally we 4.1.1. L ine energy
obtain a cylindrically symmetric system, see ® gure 2(a): In this model we do not go into the details of the line
there is a unique escape direction along the line. energy; we suppose the energy density per unit length s
Depending on the direction of the rotation of the mag- to be independent of the ® eld applied. The line energy
netic ® eld, the spiral shape of the extinction brushes is is:
right- or left-handed.

F l = 2pR l s. (2)
4. Theoretical considerations : condition of the line

4.1.2. Electric energy and deformation energy of theequilibrium
reversal domainIn this section we introduce characteristic quantities

We will make the assumption that the deformationin terms of which we will later present and analyse the
energy of the reversal domain is composed of twoexperimental results. We give an expression for the free
independent terms. The ® rst one comes from the dis-energy density of the globule, taking into account elastic
tortion along the vertical z-axis. The secondone originatesand electric contributions, as well as terms accounting
from the distortion in the plane (r, y) and is due to thefor the line tension of the defect and for its interaction
curvature in such a cylindrical system. This secondwith the meniscus. After some approximations we mini-
contribution will be taken into account in the F m termmize the total free energy density in order to ® nd the
and we will restrict F d to the ® rst elastic contributioncritical (unstable equilibrium) defect loop radius.
and to the electric energy. Then F d can be expressed as
the product of the total surface of the reversal domain4.1. Free energy
and the energy density per unit area, which we call Du.The free energy F of the system can be written in the

form:
F d =p(R2

g Õ R2
l )Du. (3)

F = F l +Fd +F h +F m (1)
In order to calculate Du, we approximate h(z) by the

where F l is the energy of the loop which is in competition one-dimensional problem of the p-wall (W = 0). The
with the deformation energy F d of the reversal domain director is described by:
containing the pwall, and F h is the electric contribution
to the energy in the homeotropic central region. These
terms model the situation of a wedge line su� ciently.

n = G sin h(z)

0

cos h(z)
In case of a twisted line, in our geometry, one needs to
have an additional term F m to characterize the inter-
action of the line with the meniscus, taking into account The free energy density [17] is then given by:the out-of-plane director component (azimuthal angle W).
F m should be a function of Rg Õ R l in such a way that

fd =
K 1

2
(div n)2 +

K 3

2
(n Ö curl n)2 Õ

eo ea

2
(E¯ n)2

F m increases with Rl for a given Rg .
The free energy, equation (1), leads to the existence

of an unstable equilibrium position of the line at a =
K 3

2
[1 Õ k2 sin2 h(z)]C q

qz
h(z)D2

Õ
eo ea

2
E2 cos2 h(z)

critical radius Rc
l (V, Rg ) above which the loop will grow,

and below which it will shrink and the reversal domain
(4)will occupy the whole globule. Rc

l (V, Rg ) is a function of
the applied voltage V and the globule radius. with

The exact director distribution is hard to calculate
and a simple model is introduced in order to estimate

k2 =
K 3 Õ K 1

K 3

> 0
the energy of the system. We assume that the director is

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1230 S. Thiberge et al.

The Euler± Lagrange equation 4.1.3. Electric energy of the homeotropic domain
Using the same notations indicated earlier we write:

d
dz G qfd

q[qh(z)/qz]H =
qfd

qh(z)
(5)

Fh = Õ
K

2
pR2

l m2 d. (12)

gives:
4.1.4. Interaction of the line with the meniscus

The interaction of the line with the meniscus is thesin h(z) cos h(z)Gk2 C q
qz

h(z)D2

+m2H
most complicated term to describe. Some simpli® cations
have to be made to approximate F m . We suggest making

=[1 Õ k2 sin2 h(z)]C q2

q2 z
h(z)D (6) an analogy with t̀he magic spiral’ problem [2] which

describes the director distribution in a nematic enclosed
between two concentric cylinders with di� erent boundarywhere
conditions on their surface. The 2-dimensional [(r, y)
dependence] case has the solution:

m = Aeo ea

K 3 B
1 /2 V

d
> 0

W(r)= (p/2) ln(r/Rg )/ln(R l /Rg ). (13)
and V is the applied voltage. This situation is similar to the one we have in our

Equation (6) can be solved simply when there is no problem in the plane at z = 0.
electric ® eld (m = 0) or in the case of the one-constant It is important to note that F m is ® eld dependent.
approximation (k = 0). When the electric ® eld is applied the turn over region

In the case of m = 0, taking into account the boundary gets thinner along z. F m , which is also the result of
conditions z (h=0)=Ô d/2 and the condition z(h=p/2)=0 integration along z, then becomes lower.
obtained by symmetry, the solution of equation (6) is: An estimation of F m is possible starting from the

W-distribution given by equation (13). We assume strong
z(h)= Ô

d

2 C1 Õ
LE (h, k)

LE (p/2, k)D (7) perpendicular anchoring at the air interface [11]. The
main hypothesis is that we suppose W (z, r) = W (0, r)
given by equation (13) for any z. This means that weand the free energy density integrated along the z-axis
neglect the twist deformation along z or forget that theis:
line has, on a microscopic scale, the structure drawn in
® gure 4 (b). This estimation gives:Du =

K 3

2

4L2
E (p/2, k)

d
(8)

F m =pK D(V )C(p/2)2 + ln2 (Rg /Rl )

ln(Rg /R l ) D (14)where LE (h, k) is the Legendre elliptic integral of
second rank.

where D(V ) is a measure of the thickness of the turnWhen an electric ® eld is applied (m Þ 0 ), we take
over region along z:K 1 = K 3 = K (k = 0) in order to ® nd an analytic solution

which leads to:
D(V)=P d/2

Õ
d/2

sin2 h(z)dz

z(h)= Ô
d

2

LF (p/2 Õ h, h)

LF (p/2, h)
(9)

=
d

h2 CLE (p/2, h)

LF (p/2, h)
Õ (1 Õ h2 )D . (15)

and

D(V ) tends to d/2 for V � 0 (h � 0) and approaches the
Du =

K

2

4LF (p/2, h)

d
[2LE (p/2, h) Õ LF (p/2, h)] (10) electric coherence length j = (K 3 /eo ea )1 /2 (d/V ) [2] at

high ® eld (h = 1).
where LF (h, k) is the Legendre elliptic integral of ® rst The R l-derivative of Fm is:
rank and h, called generally the modulus, depends on
the applied ® eld and is the solution of the equation: qFm

qR l

=pK D(V )
(p/2)2 Õ ln2 (Rg /Rl )

R l ln2 (Rg /R l )
. (16)

hLF (p/2, h)= m
d

2
. (11) Equation (16) shows that when the line gets closer to

themeniscus, the in-plane splay± benddeformationbecome
greater. And when the radius of the line decreases, theh takes its limiting values 0 and 1 for zero and in® nitely

high electric ® elds, respectively. This equation expresses bend deformation close to the line is more and more
important and the energy diverges at R l = 0. Then thisthe condition h =p/2 at the midplane z = 0.
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1231L oop defects in homeotropic NL Cs

leads to the existence of a minimum of Fm between Rl=0 VL C = 2(K /e0 ea )1 /2 is a material parameter. This can
also be used to estimate experimentally the line tensionand Rl = Rg . This corresponds to Rl /Rg =exp(Õ p/2) . 0.2.

For Rl greater than 0.2Rg , the force acting on the line is s of the defect (in units of the elastic constant); this
resulted in a value of s= 8.4K in our case.repulsive, in the case of Rl < 0.2Rg it becomes attractive.

The limit Rn o m
l (0) can be estimated much more

accurately by taking into account the anisotropy of the4.2. Critical radius
For large Rg (or small Rg but su� ciently high electric elastic constants; thus k Þ 0:

® eld) the total energy F has two minima, one at R l close
to zero and the other close to Rg . Depending on the Rn o m

l (0)=
(d/2)(s/K 3 )

L2
E (p/2, k)

. (18)
globule size and the electric ® eld, the absolute minimum
can be one or the other. Between these two minima, the In ® gure 7, the critical line radius is plotted as a
free energy reaches a maximum value at a line radius function of the relative voltage. The lowest curve in
called the critical radius Rc

l . ® gure 7, calculated for Rg = 135mm, corresponds to the
For low values of Rg and a low electric ® eld, the no interaction case and is given by equation (18).

second minimum disappears because of the domi- (2) In the general case, also taking into account the
nating repulsion term, equation (14). This means that interaction term, the cancelling of the ® rst R l-derivative
the line spontaneously shrinks. When Rc

l does exist, the of F gives:
R l-derivative of F gives the solution for Rc

l . Three cases
can be considered.

Rl = Rn o m
l (V )C1+

1

2ps AqFm

qR l BRlD . (19)(1) W hen the interaction of the line with the meniscus
is negligible (Rc

l . 0.2Rg ), the critical radius can be given
The critical radius Rc

l is the solution Rl = Rc
l of thisby the function:

equation and can be checked numerically.
The high voltage (linear) part of the curve (® gure 7)

Rn o m
l (V)=

(d/2)(s/K )

LF (p/2, h)[2LE (p/2, h) Õ (1 Õ h2 )LF (p/2, h)]
.

remains una� ected by the interaction term for any
globule radius, but the zero voltage limit of Rc

l shifts(17) to higher values as Rg decreases (e.g. the curves for
Rg = 83, and Rg = 51mm in ® gure 7). Both terms on theThe two limiting cases are:

VL C /V is small (h = 1), then Rn o m
l (V ) is proportional rhs of equation (19) contribute and one observes an S̀’

shape of the curve (see the results for Rg = 35, 40 andto (1/V );
VL C /V is large (h = 0), then the critical radius 47mm in ® gure 7).

(3) T he tricritical limit. As mentioned earlier, for smallsaturates at a constant value of Rn o m
l (V )=Rn o m

l (0)=
(d/2 )(s/K )/(p/2)2 ( ® gure 7 shows curves calculated for Rg , the critical radius does not exist above a certain

value of the electric ® eld because the repulsion term is5CB).

Figure 7. Theoretical prediction of
the critical radius for di� erent
globule sizes as a function of
the inverse of the applied volt-
age (using s=8.4K ), Rg =35,
40, 47, 51, 83 and 135mm.
The dashed line is the tri-
critical limit. VL C =2(K /eo ea )1 /2

is a material parameter.
Rn o re p

l (V =0) =24.5mm.
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dominant. One can calculate the minimum electric ® eld theoretical curve from its approximately constant part
for which Rc

l still exists. This occurs at that voltage (tricritical range without stationary line radius) to the
where the energy maximum and minimum coincide; thus rapidly decreasing part, where the critical radius is given
the ® rst and second derivatives of the energy simul- by equation (19) (for V = 0 ). We note, that the experi-
taneously vanish. One has to solve a system consisting mental points (black dots in ® gure 8) obtained for
of equations (19) and (20), the latter equation is obtained globules in the range 20mm< Rg < 47mm (with a stable
by direct derivation of equation (19): point defect con® guration) in such a way, that the

minimum voltage was measured at which the loop
defect could be stabilized, show also a cross over aroundRn o m

l (V )
1

2ps Aq2 Fm

qR2
l BRl= R

c
l ( V ,Rg)

= 1. (20)
50mm. This is an independent measurement from the
observation of the stable globule con® guration withoutThe solution of this system is a tricritical point in the
electric ® eld. The experimental data for Rc

l /Rg in this Rgparameter space (V, Rg , Rc
l ) and will be denoted by

region (below 50mm) scatter within 0.68 Ô 0.02 which is(Vo , Rg o , Rc
l o ).

a range determined by the experimental accuracy. TheThe solution (Vo , Rg o , Rc
l o ) delivers the dashed line

model (continuous line) predicts a slight increase ofshown in ® gure 7 and the nearly constant part of the
Rc

l /Rg with Rg reaching a value of 0.65 at the crossover.curve for low Rg in ® gure 8, where black dots represent
This discrepancy could be due to the approximationthe experimental data for the tricritical behaviour.
used for determination of the interaction term (F m )Figure 8 also shows the solution of equation (19) for
between the line and the meniscus.V = 0 (globule radii above 50mm) and the corresponding

On the right side of ® gure 8, Rc
l (0, Rg )/Rg versus Rg isexperimental results (circles).

presented for globules larger than Rg o . Rc
l (0, Rg )/RgSolutions of equation (19) for di� erent values of Rg

tends to the value 24.5/135 . 0.2 in the Rg range studied(full lines), and the solution of the system of equations
(50mm¼ 135mm). In this range, the force due to the(19, 20) (dashed line) are shown in ® gure 7.
in-plane deformation, derived from equation (16), is
always repulsive. As was discussed before, if the value of5. Comparison of experiments and theory
Rc

l is of the order of 0.2Rg , the repulsive force acting onMost of our measurements were made for a thickness
the line is zero. This is the case for Rg = 135mm becaused = 14.5 Ô 0.5mm. It was found that at zero voltage the
Rc

l (0, 135) = 24.5mm. This value gives Rn o m
l (V = 0 )largest globule which had the point defect (R l = 0) as

which can be given either by equations (17) or (18),the stable con® guration was Rg = 47mm. The smallest
depending on whether the anisotropy of the elasticone, which had the defect line close to the meniscus as
constants is taken into account.the stable con® guration, was Rg = 51mm. We assume,

We measured the critical radius as a function ofthat the experimental value of Rg o (Vo = 0) is 49 Ô 2mm.
the applied voltage for several globule sizes Rg inThis is in a very good agreement with the theoretically
a range including Rg o (V = 0). Results obtained arepredicted value which is 50.1mm and can be deduced

from ® gure 8. It corresponds to the cross over of the shown in ® gure 9. The asymptotic limits for low 1/V

Figure 8. Experimental measure-
ments and model prediction
(using s=8.4K ) of the tricritical
range (left part, black dots)
and critical radius at zero ® eld
applied (right part, white dots).
Experimentally, the tricritical
point at Vo =0 is obtained for
Rc o

l =49 Ô 2mm, theoretically
for Rc o

l =50.1mm, d =14.5mm.
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1233L oop defects in homeotropic NL Cs

Figure 9. Experimental measure-
ments of the critical radius
for di� erent globule radii as a
function of the inverse of the
applied voltage, d =14.5mm.

[dotted line, given by equation (19)] and for high 1/V where the diameter of the core a is ~100AÊ and the
energy per unit length of the core f c o r e

tw is t is estimated[continuous lines calculated for Rg = 51mm and 83mm
from equation (19)] are also shown. A good qualitative ~(K K 2 )1 /2 /2. In our model we did not go into the details

of this energy which is supposed to vary with theagreement can be seen between theory and experiment
by comparing ® gures 7 and 9. Experiments show the thickness l of the turn over region, which itself is electric

® eld dependent. Because l appears in ftw is t through asaturating behaviour in the limit of large 1/V for
Rg > Rg o . logarithmic term, it does not lead to signi® cant modi-

® cations in the electric ® eld range used. Then, con-For Rg = 135mm and V = 0, the interaction with the
meniscus vanishes and the asymptotic value for the Rc

l sidering s as a constant value seems to be a good
approximation. Calculation from equation (21) givescan be calculated from equations (17) and (18). For

medium globules (Rg = 51mm and 83mm) this is not the ftw is t ~6± 7 K, with typically l~15mm.
case and Rc

l (0, Rg ) shifts to higher values as predicted
by equation (19), and can also be seen experimentally.

6. ConclusionFor smaller globules (see Rg = 35mm and 47mm) the S̀’
Analysis of the extinction brushes permits one toshape can also be clearly seen. There are quantitative

understand the director distribution around a twisteddeviations especially for Rg < Rg o . The exact S̀’ shape
line constrained in the plane of the sample. This kind ofof the curve is basically determined by the force of
line is most commonly found in nematic liquid crystalsthe interaction energy (F m ) which we approximated by
because the elastic constants usually verify the Anisimovequation (16). By describing it more precisely one could
and Dzyaloshinskii [14] condition for the stability of aexpect a better quantitative agreement.
wedge disclination (see §3.2).As already mentioned, our model allows us to

We estimated the force acting on the line due to thedetermine the line tension (s) of the loop defect. Using
in-plane elastic deformation and found qualitativelyequation (17) for the isotropic elasticity we obtain
goodagreement with the experiments. We havemeasureds= (8.4 Ô 0.3)K and using equation (18), taking into
the tension of a twisted line in the case of 5CB in aaccount anisotropy, we have s= (7.3 Ô 0.3)K 3 taking
sample of thickness d = 14.5 Ô 0.5mm and compared thek2 = 0.23.
results with the prediction made by Ranganath [3] andIn the calculations presented we used the value of
found satisfactory agreement.8.4K . In order to check whether this is a realistic value

Our experiment also permits us to observe the trans-we compared it with other work [3]. Ranganath [3]
formation from a loop line defect to a topologicallyhas calculated the free energy of the planar twist
equivalent point defect. The inverse transformation candeformation per unit length of a defect line, using the
also be carried out by using a very high electric ® eld.approximation K 1 = K 3 = K :
This process is of high interest and the mechanism of
this transformation is the subject of experimental and

ftw is t =
p
4

(K K 2 )1 /2 ln(l/a)+ f c o r e
tw is t (21)

theoretical work that is in progress. These observations
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Coullet, P., Rica, S., and Gilli, J. M., 1994, Phys.are related to the theoretical work done by the authors
Rev. L ett., 72, 1471.of reference [18]. The question raised is whether a point [6] Gilli, J. M., Thiberge, S., Vierheilig, A., and Fried, F.,defect could be energetically unstable against expanding 1997, L iq. Cryst., 23, 619.

into a ring disclination of small radius. The nature of [7] Minoura, K., Kimura, Y., Ito, K., and Hayakawa, R.,
1997, Mol. Cryst. liq. Cryst., 302, 345; Pargellis, A. N.,the transition defect± extended loop defect should be
Green, S., and Yurke, B., 1994, Phys. Rev. E, 49, 4250;di� erent in the case of a real point defect or small radius
Pargellis, A. N., Finn, P., Goodby, J. W., Panizza, P.,ring defect. Attention will be devoted to this transition
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